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Improvement in Calculation of Some Surface
Integrals: Application to Junction
Characterization in Cavity
Filter Design
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Abstract—An integral method is presented for the accurate
characterization of waveguide junctions which are commonly
used in the design of cavity filters. The specific feature of this
approach is a reduction of a surface integral to a simple con-
tour integral and the consequent reduction in the computation
time of the junction scattering parameters is more than 50%.
The method is applied to calculate the electromagnetic coupling
between circular cavities through rectangular irises as well as
their coupling to the input and output waveguides. This method,
in conjunction with an optimization procedure, is employed for
the direct design of a dual mode cavity filter and the obtained
results are in good agreement with experimental data.

INTRODUCTION

ULTIMODE cavity filters are widely used in micro-

wave telecommunication systems. In order to in-
crease the order of these filters, several cavities should be
~ used in cascade and the electromagnetic coupling between
the adjacent cavities is achieved by means of rectangular
or cross irises [1]-[5]. These irises can also be used to
ensure the coupling of the filter to the input and output
waveguides. In this way, the design of these filters will
largely depend on the determination of the different cou-
pling coefficients and consequently, an accurate charac-
terization of the coupling irises constitutes the basis of the
whole design. After having calculated the scattering pa-
rameters of each discontinuity, the total transmission
through the structure can be determined by considering
the cascaded discontinuities [8]-[10].

Several formulations have been used to study discon-
tinuities. Finite differences, finite elements and TLM are
general methods which require important computation fa-
cilities. The generalized § matrix method based on the
development of electromagnetic fields at the junction is
often used [6], [7]. Recently, a moment method formu-
lation with entire basis and testing functions was used to
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Fig. 1. Coupling between two circular cavities by rectangular iris. Mea-
surement structure.

analyze the transition between rectangular and circular
waveguides coupled by a rectangular slot [11].

In the present work, the modeling of different discon-
tinuities is based on a variational integral multimodal
method. The junctions are then cascaded by taking into
account the number of coupled modes [8]-[10]. This ap-
proach provides accuracy and small size matrices, thus
rapidity. However, the field continuity condition at the
junction involves scalar products calculation over the sur-
face of the aperture, so that a surface integral must be
calculated. In the case of a circular to rectangular transi-
tion [12], this integral is carried out numerically. Indeed,
the expressions of the electromagnetic fields in the cir-
cular waveguide involve Bessel functions.

In this paper, a rigorous method is developed, allowing
the reduction of a surface integral to a contour integral.
This method will be applied to the study of the circular to
rectangular discontinuity, The variation of the coupling
between two circular cavities by a rectangular iris is stud-
ied for several iris lengths (Fig. 1). Our results are com-
pared with experimental data. According to this design
approach, a six-pole elliptic filter has been realized and
the filter response has been found to be in good agreement
with the initial requirements.

THEORY

Suppose a surface S limited by a contour L (Fig. 2),
where the quantity / is calculated by the following integral

I = S (f:8 + f,8) 48 ey

0018-9480/93%03.00 © 1993 IEEE



GUILLOT et al.: IMPROVEMENT OF SURFACE INTEGRALS

-

d

Fig. 2. Surface S limited by a contour L.

with,
dl = unit vector tangent to the aperture contour L.
i = unit vector normal to d! and in the plane of the

aperture.

Here f and g are functions of two variables with two com-
ponents, deriving from functions e, &, E, and H (scalar
functions of two variables).

fo=98,E - 3,H
£, = 0,E + 3,H

Therefore, the quantity I can be written as a sum of four
integrals

gx = 3xe - ayh (2)
g, = d,e + d,h.

I'=1Iy + Ig + I + Ly ©)
where the integral expressions are given by
Iy = S [0,E 3,e + O,E d,e] dS @)
Iy = S [0,H 3,k + 0.H 3,h] dS. ®
I = S [-0,H 0,e + 3.H d,¢] dS 6
Iy = S [-0,E dyh + 0,E d,h] dS. )
§

Moreover, we assume that the following relationships hold

2 E E 2ce e
v <H>=)\<H> Vi =pG) MN#Ep B

Consider the following vector identity, where Ais a vec-
tor and u a scalar function

Sv-(uZ)ds=SVu-st+Suv-st.

®

On the other hand, when a volume V is flattened into a

surface S, the Divergence Theorem can be expressed by
the following limit identity

Sv-(uZ)dS=SLu2-ﬁdz (10)
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this relationship holds for the surface S of Fig. 2, and (9)
becomes

S Vu-Ads = S ud - 7 dl - S uv - 4dS. (11)
) L K
Now by taking ¥ = ¢ and A = VE, (11) becomes
S VE - Ve dS = S eVE - it dl — S eV’E dS (12)
s L s

the left hand side of the above equation is equal to ;, and
by using (8), it yields
1(1)=S€VE'ﬁdl-)\SeEdS. (13)
L s

In the same way if we take u = E and A = Ve, we will
obtain

Iy = SL EVe - idl — u S Ee dS. (14)

The combination of (13) and (14) gives

S Ee dS = S [eVE — EVel * n dl. (15)
s L

1
N\ =

Finally, the combination of (13) and (15) yields the fol-
lowing expression for I;,

_ N \gve - (—# ].~
I(l)_SLli<)\—/,L>Eve <)\_“>3VE n dl.

(16)

In a similar way, and by taking successively ¥ = h, A=
VH and u = H, A = V h we will obtain the following
expression for I

A U } o
= - H|- dl.

a7

In order to calculate I3, we will take u = ¢ and A=

(%% and (11) gives
SZ'VedS= S ed - 7 dl - S-eV-st (18)
s L s

by noting that the left hand side of the above relationship
is equal to I3 and that V - A = 0, we obtain:

Iy = SL e(VH X 7 di. (19)

Now by taking # = E and 4= (“gfj,’), the following
expression is derived for Iy,

Iy = SL E(Vh x 7Y+ di (20)
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and the quantity 7 will take the following form

1=S{ N Eve + HVR) + —*
L(N—p B

- (eVE + hVH)} -7 dl

+ S (eVH + EVH) X 7 - d. 1)
L

It can be noted that each of the scalar functions e, i, E

and H (denoted by ¢) will satisfy the following relation-

ships

a9 - d
Vo idl="2dl and Ve xi-di="2dl.
on al
(22)
Now, the above relationships can be applied to the study

of the circular to rectangular waveguide discontinuity
(Fig. 3). Then the integral is reduced according to the
character of the modes, TE or TM, on each side of the
discontinuity.

1) TE, — TE, modes:

U oH
I=S h—dl
Ly — AN On

2) TM, — TM, modes:

A de
r=| de
L)\—,uEandl

3) TM, — TE, modes:

oh
I=\ E—dl
SL al

4) TE, — TM, modes:
I=0

Here, the functions £ and H represent the electric and
magnetic fields on the cavity side while e and 4 corre-
spond to those of the rectangular side. They satisfy the
Maxwell’s equations as well as the continuity conditions
in the junction plane.

The scalar products have been evaluated with the sur-
face integral method as well as with the contour integral
method. The error on the scalar products values is less
than 1073%. These results validate our formulation. Fig.
4 shows the comparison between typical computation
times required to obtain the same results by the two ap-
proaches (surface integral and contour integral). The con-
tour integral method is seen to be two to three times faster.
The application leads to a considerable time saving for the
scalar product calculation and consequently for the scat-
tering matrix calculation of the circular to rectangular
junction.

The method used for the determination of the junction
scattering parameters is a multimodal variational ap-
proach [8]-[9] which has the advantage of being accurate,
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Fig. 3. Circular to rectangular waveguide junction.
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Fig. 4. Comparison of the calculation time according to the integration
method for circular to rectangular junction.

fast, and where the use of small size matrices reduces the
computer memory occupation.

NUMERICAL AND EXPERIMENTAL RESULTS

This method is used to calculate the coupling between
two circular cavities by a rectangular iris. The structure
used for measuring the coupling between cavities is shown
in Fig. 1. The cavities are coupled to the input (or output)
waveguides through small apertures in order to ensure
weak couplings. The transmission of the structure is char-
acterized by means of the bandwidth of the frequency re-
sponse (Fig. 5).

In practice, thin irises are used where their lengths are
determined in function of the desired bandwidth. The in-
put waveguide is excited by the fundamental mode TE),,
which is the only propagating mode. So, only TEmn and
TMmn modes, with m odd and n even for rectangular
waveguide and m odd for Bessel functions Jm of circular
waveguides are considered.

In order to ensure a good numerical convergence of the
bandwidth with the mode number in both waveguides
(circular waveguide and rectangular iris), the bandwidth
has been determined by using different numbers of modes.
The diameter and length of the cylindrical cavities are re-
spectively 26.92 mm and 45.395 mm. Fig. 6(a) shows the
convergence of the numerical results when the number of
modes in the rectangular iris is increased, while Fig. 6(b)
illustrates the convergence in terms of number of modes
in the circular waveguide. Both variations are shown for
several iris lengths. According to these variations, 350
circular modes in the cavities and 10 modes in the iris will
be sufficient for obtaining convergent values. Another
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Fig. 6. (a) Convergence test for the bandwidth as a function of number of
modes in the iris. (b) Convergence test for the bandwidth as a function of
number of modes in the circular cavities.

convergence test has been made where three coupled
modes have been necessary [8]-[10]. . 7

The bandwidth 'has been measured for several iris
lengths. The diameter and length of the cylindrical cavi-
ties are, respectively, 26.46 mm and 42.4 mm. The iris
length is varied as a parameter, while its width and thick-
ness are fixed to 1 mm.
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Fig. 7. Comparison between calculated and measured bandwidths ob-
tained by two circular cavities coupled by a rectangular iris.
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Fig. 8. Dual mode six-pole filter.
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Then the theoretical variation of the bandwidth with the
length of the rectangular iris has been calculated and pre-.
sented in Fig. 7. The experimental data are in very good
agreement with the theoretical results. .

According to this design technique [13], a six-pole el-
liptic filter has been realized (Fig. 8). The required spec-
ifications are the following:

¢ central frequency: 11.85 GHz
¢ bandwidth: 40 MHz
¢ VSWR in the passband: <1.15

‘The bandwidth variation with the iris length is repre-
sented in Fig. 9. The dual mode cavity filter has been



2160

" T

s

—

-20dB

—
L
e

{ .
Al AL
v\/\\/ !

V NARY
}

Scattering coefficients ( 5 dB / div)
== Transmission —— Reflection

A

11.90 GHz

-40 dB /

11.80 GHz

11.85 GHz

Frequency ( 10 MHz / div )

Fig. 10. Measured response of the six-pole elliptic filter. Required values:

fo = 11.85 GHz, bandwidth 40 MHz, VSWR < 1.15.
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realized using these values. The filter response has been
measured (Fig. 10) and a very good agreement is ob-
served with the predicted values. There has been no need
for any further mechanical adjustments.

CONCLUSION

A rigorous method has been described to reduce a sur-
face integral to a contour integral. The method validity
has been demonstrated by studying a circular to rectan-
gular junction. Moreover, our formulation exhibits a bet-
ter performance and its gain in computation time is evi-
dent. This formulation associated with a multimodal
variational method allows a full wave analysis of discon-
tinuities and can be implemented on personal computers.
This procedure has been applied to the design of a filter
structure. According to the optimized computed data, fil-
ters have been realized by ALCATEL ESPACE. The
measured values agree well with the predicted require-
ments.
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